

HESS Opinions: Reflecting and acting on the social aspects of modelling

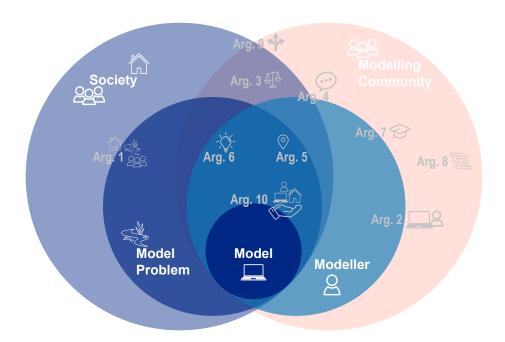
Janneke O.E. Remmers^{1,*}, Rozemarijn ter Horst², Ehsan Nabavi³, Ulrike Proske¹, Adriaan J. Teuling¹, Jeroen Vos², and Lieke A. Melsen^{1,*}

Abstract. Within hydrological modelling, a persistent notion exists that a model is a neutral, objective tool. However, this notion has several, potentially harmful, consequences, such as marginalising certain stakeholders. In the critical social sciences, the non-neutrality in methods and research results is an established topic of debate. Thus we propose that in order to deal with it in hydrological modelling, the hydrological modelling network can learn from, and with, critical social sciences. This is a call for responsible modelling – modelling that is accountable, transparent, power-sensitive, situated and reproducible and this responsibility is carried by all actors related to the modelling study. To support our proposition, we have four pillars of arguments, detailing the social aspects in hydrological modelling, insights from the critical social sciences, how to build bridges between sciences, and reflecting on what the hydrological modelling network can learn. We provide several actionable recommendations as a follow-up. The main take-away, from our perspective, is that responsible modelling is a shared responsibility. Therefore, we invite all actors – from the modelling network (from commissioner to modeller to end-user) and society – to take up their share in establishing responsible modelling.

1 Introduction

Within hydrological modelling, a persistent notion exists that a model is a neutral, objective tool (Frigg and Hartmann, 2024; Savenije, 2009; Wesselink et al., 2017). Although it is generally acknowledged that models

¹Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, The Netherlands


²Water Resources Management Group, Wageningen University, Wageningen, The Netherlands

³ Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia

^{*}Corresponding authors: Lieke A. Melsen (lieke.melsen@wur.nl) and Janneke O.E. Remmers (janneke.remmers@wur.nl)

Figure 1. General overview of how the model and its context overlap and where our different arguments are positioned within this. The model problem is the hydrological problem that is being studied and modelled. The argument numbers refer to the arguments numbered in the text. 1) hydrological modelling problems are embedded within society, with all its social processes. 2) the modelling process is a social product. 3) the social aspects of hydrological modelling have ethical implications. 4) vocabulary to express the social aspects in hydrological modelling. 5) reflect on positionality and practice active reflexivity. 6) basic understanding of critical social sciences. 7) education can facilitate the knowledge building. 8) structural changes in the modelling network. 9) new avenues for research. 10) take responsibility for model results.

influence society, for instance through decision-support, this notion of neutrality presumes that the model itself is not influenced by society (Wesselink et al., 2017). Models are deemed to give unbiased information for decision-support. However, we argue that hydrological modelling takes place within a social context (Krueger et al., 2012; Mayer et al., 2017; Melsen, 2022; Packett et al., 2020, , visualised in Fig. 1). The model is influenced by social relations and potentially has differentiating effects on reality; implying that model outcomes might inform policies or infrastructure design that will benefit one group or ecosystem more than others, and will negatively affect different groups or ecosystems in different ways.

The notion of neutrality in modelling has several, potentially harmful, consequences. Neutrality implies that all people and aspects are treated equally. This is not the case (Doorn, 2017; Packett et al., 2020). For example, models are always simplifications of reality, and therefore choices are made on what to represent in the model, what not, and how (Frigg and Hartmann, 2024; Refsgaard, 1996; Savenije, 2009). As a result, the unrepresented processes and aspects are marginalised and become invisible. This can result in injustices: some groups being overlooked, some interest being prioritised, or some ways of understanding sidelined (Doorn, 2017; Zwarteveen and Boelens, 2017), which are obfuscated by assumed neutrality. Simultaneously, ignoring the political side of models may impede their potentiality or effectiveness (Beven et al., 2022; ter Horst et al., 2023b; Saltelli and Di Fiore, 2023). Acknowledging the political side of modelling can create opportunities in better connecting to specific needs within the modelled problem.

In the critical social sciences – the sciences dealing with critical questions of power relations, especially oppression and domination (Watts and Hodgson, 2019), the non-neutrality in methods and research results has been a topic of debate for a longer period already (Mendelsohn, 1977; Latour, 1990; Law, 2004; Sismondo, 2011). Different disciplines within the critical social sciences, such as Science and Technology Studies (STS) and political ecology, provide insights into how to analyse and deal with non-neutrality. Thus, in order to take into account the non-neutrality in modelling, we propose that the hydrological modelling network can learn from, and with, critical social sciences. This is a call for responsible modelling – modelling that is accountable, transparent, reproducible, power-sensitive, situated, and inclusive of diverse knowledges and interests – and this responsibility is carried by all actors related to the modelling study.

We are aware that our argument is not new and has been brought up in different terms and ways across the hydrological modelling network. Part of this comes from our own contributions to this debate (ter Horst et al., 2023a; Melsen, 2022; Nabavi, 2022; Remmers et al., 2024), but we also acknowledge active research communities in Australia working on good modelling practices and model governance (Hamilton et al., 2022; Jakeman et al., 2006, 2024), work done in Germany on situated modelling (Klein et al., 2024; Krueger et al., 2012; Krueger and Alba, 2022), ongoing research in France (Molle, 2009; Venot et al., 2014), Post-Normal science (Funtowicz and Ravetz, 1993; Petersen et al., 2011; van der Sluijs, 2002) and sensitivity auditing (e.g. Puy et al., 2023; Saltelli and Di Fiore, 2023), work done in the Chesapeake bay (Deitrick et al., 2021; Lim et al., 2023), and the Open Modelling Foundation initiative (OMF, SA). This list is far from complete, but shows different research groups are working on these topics. That being said, from experience

we know that the effects of these studies are often limited in practice, and therefore we provide here a clear overview of arguments to invite the hydrological (modelling) community to join the conversation on the non-neutrality of models, as well as to engage in a constructive way.

To support our proposition, we have four pillars of arguments: the social aspects in hydrological modelling, insights from the critical social sciences, building bridges between sciences, and reflecting on what the hydrological modelling network can learn. Within each of these pillars, we will provide several subarguments. The main points of the subarguments are highlighted in bold. Figure 1 provides an overview of our perspective and where our arguments are positioned in this.

2 Social aspects in hydrological modelling

The first pillar supporting our proposition concerns the social aspects already present in hydrological modelling. Showcasing how hydrological modelling already contains social aspects can highlight the importance for the hydrological modelling network to acknowledge that modelling is not a neutral, purely technical activity. This pillar is underpinned by three arguments.

First, the problems hydrological modellers study are **embedded within society, with all its social processes** (Arg. 1). Water availability in rivers is impacted by land use changes (Teuling et al., 2019; Wamucii et al., 2021). Unsustainable management of groundwater abstraction has social and political consequences (Nabavi, 2018; Sanz et al., 2019). Or sea level rise necessitates societies to adapt to the risks this brings (Irani et al., 2024; Kopp et al., 2019). These examples led to the initiation of the field of socio-hydrology or hydro-sociology (Sivapalan et al., 2012; Krueger et al., 2016; Melsen et al., 2018; Ross and Chang, 2020). These disciplines explore hydrological problems as integrated parts of society and often use stakeholder participation as an approach to include the different perspectives to an hydrological problem (ter Horst et al., 2023a; Xu et al., 2018).

Second, the **modelling process itself is a social product** (Arg. 2), as it inherently contains underdetermined decisions and social processes. Underdetermined decisions arise from equifinality, meaning that certain options are not distinguishable from each other and as such are not 'objectively better' compared to each other (Beven and Freer, 2001; Butts et al., 2004; Ward, 2021; Winsberg, 2012). Although equifinality is often explored in the domain of parameter uncertainty, it can be extended to equifinality in methods or

approaches, which might still produce different results or conclusions. Proske et al. (2022, 2023) also use the concept of equifinality when evaluating different model complexities. For the case of cloud microphysics, they show that the simplification of the model formulation does not affect the model results substantially – the results are equifinal compared to each other. Such equifinality in modelling decisions are inherently based on social processes, introducing subjectivity and inter-modeller variability (Babel et al., 2019; Krueger et al., 2012; Melsen, 2022; Remmers et al., 2024). For example, certain variables are included and other excluded from the conceptual model, which has large effects on the model outcomes. An example is the modelling of the Ebro River in the north of Spain to design the planned water transfer to the South. As the sediment load was not taken into account in the hydrological model the negative effects of the transfer for the Ebro Delta were not factored in (Gorostiza et al., 2023). Also the choice for model software is often based on legacy and financial constraints - the institute a modeller works at determines which software is used (Addor and Melsen, 2019). Additionally, choices made early on in the modelling process can influence choices later on, creating so-called path dependency (Lahtinen et al., 2017; Lenhard and Winsberg, 2010). For example, the chosen model software limits the possible model settings (Remmers et al., 2024). Furthermore, Lane (2014) argues that the hydrological modeller is not separated from society, and thus is not separated from the problem they study. What these studies show is that the same modelling research question would be answered with a different modelling approach, and therefore likely different model results, at a different time and a different place.

Third, and this is where the previous two arguments come together, the social aspects of hydrological modelling have political and ethical implications (Arg. 3), such as questions about who is involved in the modelling and who benefits (Beck and Krueger, 2016). Due to the modelling decisions and assumptions made (from Arg. 2), model results contain a specific perspective of reality (Nabavi, 2022; Saltelli and Di Fiore, 2023). Choosing this perspective means excluding or sidelining other perspectives. Stakeholder engagement has the potential to bring these marginalised perspectives forward again (Packett et al., 2020; Xu et al., 2018), although stakeholder engagement comes again with its own challenges (e.g. ?Turnhout et al., 2020). As model results have societal implications, injustices can occur (Thaler, 2021; Zwarteveen and Boelens, 2017). For example, models used in flood studies, which obviously can have high societal impact, can cause injustices. They might for instance not consider informal settlements in the floodplains, and as such marginalise inhabitants of those floodplains (Wesselink et al., 2017).

Insights from critical social sciences

110 Critical social sciences provide the tools and theoretical frameworks that can address the social aspects of hydrological modelling. Here, we will highlight three.

First, the critical social sciences have the vocabulary to express the social aspects in hydrological modelling (Arg. 4). Different disciplines of critical social sciences can provide various suggestions for useful vocabulary. This vocabulary is not (yet) common in the hydrological modelling network, even though sim-115 ilar concepts are addressed in the hydrological modelling network, albeit described more elaborately. For example, when we just described 'model results contain a specific perspective of reality' in the previous section (in Arg. 3), we could have also used the term 'situated', which is also used in feminist theories (Haraway, 2013). This means that model results are formed in a specific context. Another example is 'ontology', meaning the study of the nature of things (Frigg and Hartmann, 2024; Wesselink et al., 2017). With a model, 120 a researcher studies what a hydrological system looks like. The representations researchers choose are dependent on their ontological view of the system. In more recent literature (e.g. Klein et al., 2024; Wesselink et al., 2017), some of the critical social science vocabulary and concepts are related to the practices of modelling. Knowledge of this vocabulary can enhance our understanding of and facilitate our discussion of the social aspects in hydrological modelling (Laplane et al., 2019).

Second, social scientists often reflect on their positionality and practice active reflexivity in their research (Arg. 5). A positionality is written to indicate how they as researcher relate to the subject they study (Lin, 2015; Njeri, 2021; Soedirgo and Glas, 2020). For example, critical social science disciplines using ethnographical methods - observing subjects in their own environment - often include a positionality, since the scientist's background influences the observations and interpretations they make. Hydrological mod-130 ellers also have a personal perspective/position (from Arg. 2) towards their subject through their own previous experience or the institute they work at or even their own personal interests and hobbies (Deitrick et al., 2021; Melsen, 2022; Packett et al., 2020). Based on these experiences or contextual factors, modellers tend to make decisions (Krueger et al., 2012; Melsen, 2022; Remmers et al., 2024; Sanz et al., 2019). Reflecting on and being transparent about positionality can create more transparency regarding this personal 135 context and assumptions made (Blackett et al., 2024; Klein et al., 2024; Wesselink et al., 2017). For example, Melsen (2022) includes a brief positionality for the interview study she did, highlighting how her

145

own background has influenced the conducted interviews. Besides writing a positionality, active reflexivity - continual questioning of your own assumptions and biases - should also be done throughout the modelling process (Soedirgo and Glas, 2020). This entails documenting assumptions, normalising reflexivity, engaging 140 others in the reflexivity, and publishing the modeller's reflexivity alongside the research. We acknowledge that publishing reflexivity through a positionality means being vulnerable and open. We believe this to be a strength, however, because the vulnerability and transparency can build trust in how models are used. Additionally, it can inspire others to also reflect on or to become more open about their modelling practices and assumptions. As more people start to do this, it could change practices in the whole modelling network.

Third, again combining the previous two arguments, basic understanding of critical social sciences is needed to situate research in a broader context, to understand the possible positive and negative consequences of modelling, and to be able to identify who to empower and how (Arg. 6). This context is needed since hydrological modelling addresses societal issues (from Arg. 1), the hydrological modelling process is a social product (from Arg. 2), and model results have political and ethical implications (from Arg. 3). The 150 necessary basic knowledge should entail knowledge to place modelling results in the societal context (from Arg. 1) and reflect on potential ethical consequences of the results (from Arg. 3), for example knowledge on flood warning responses to understand what model results mean. In 1997, the National Weather Service did not include the uncertainties when they issued a flood warning two months in advance for the Red River, North Dakota, USA. Because of this, the administration of a town, Grand Forks, thought it was safe. But, the actual flood reached the upper band of the uncertainty range, resulting in flooding of the town and 75% of the houses were damaged. Currently, the National Weather Service does provide that information (Silver, 2012). Thus, executing an uncertainty analysis or not as a modeller can have ethical implications in society in water management (McMillan et al., 2017; Silver, 2012). Recently, ethics of Artificial Intelligence has gained traction (Doorn, 2021; Maier et al., 2024; Nabavi et al., 2024), and rightly so. This development in 160 ethics of Articficial Intelligence can be used to develop the ethics of numerical (hydrological) modelling. Understanding of certain concepts of critical social sciences can also ease reflecting on the subjectivity in modelling (form Arg. 2). For instance, the vocabulary (from Arg. 4) can help expressing the subjectivity or help initiating reflexivity. Ontology - studying the nature of things - can spark debate on the different perspective people have of a hydrological system (Agrawal et al., 2024). A person living somewhere can define what a system looks like differently than a researcher or tourist.

175

180

185

190

4 Building bridges between sciences

Different researchers have been trying to build bridges between (the social and hydrological) disciplines (Krueger et al., 2016; Pulkkinen et al., 2022; Rödder et al., 2020; Ross and Chang, 2020; Venot et al., 2022; Zwarteveen and Boelens, 2017), but most remain within their own discipline. Hierarchy of sciences – the idea that certain sciences, such as physics, have a higher degree of consensus and scientific advancement than others, such as social sciences – reinforces this way of thinking and acting (Comte, 1855; Cole, 1983; Fanelli, 2010; Simonton, 2006). We propose two ways in which the hydrological modelling network can increase the building of bridges to critical social sciences: firstly, through education, which will instigate structural changes in the long-term, and, secondly, through structural changes that can have an immediate effect.

First, education can facilitate the knowledge building necessary to understand the basic critical social science concepts (Arg. 7). Understanding basics of other sciences can increase communication and effectiveness in future work situations, enhancing inter-disciplinary collaborations (from Arg. 6). This teaching of social processes and reflexivity needs to be practical and integrated within hydrological modelling education (Micheletti et al., 2024; Oldfield, 2022; Stefanidou et al., 2014). For example, the curriculum for hydrological modelling education should have reflexivity and responsible modelling integrated in its curriculum: during a modelling course, the students learn to apply reflexivity as they model. Education should extend to working professionals in order to have them keep up with new insights and to also incorporate this knowledge in the current workforce.

Second, although education can help raise a new generation of hydrological modellers, we need **structural changes in the scientific network** to facilitate the incorporation of social aspects in daily modelling practices (Arg. 8). Structural changes can guide and force the hydrological modelling network to adapt practices focusing on taking the social aspects into account (Jakeman et al., 2024). For example, funding requirements can include a positionality statement within the funding application (from Arg. 5) or a research plan that specifically designates time for active reflexivity. Also, journal requirements can be adapted to incorporate social aspects in hydrological modelling more explicitly. Journals might start asking for a positionality statement as well, or they can ask for documentation on assumptions in the modelling process.

200

205

215

220

Reflecting on what the hydrological modelling network can learn

Building a bridge to critical social sciences can improve transparency about the social aspects of hydrological modelling. Also, considering and disclosing the uncertainties associated with these aspects potentially creates more reproducibility. Increased transparency and reproducibility can contribute to more constructive scientific progress and more responsible and accountable policy making.

Also, acknowledging social aspects in hydrological modelling can open **new avenues for research** (Arg. 9). Critical social science understanding can move the hydrological modelling network towards more productively working on societal problems (from Arg. 7). Through reflecting, modellers are incentivised to rethink their modelling decisions. This might result in more robust, inclusive and accountable modelling decisions. In turn, this will provide more accountable decision-support. Reflexivity highlights assumptions made. Sharing these assumptions can streamline research where researchers can consciously build on each others methods or findings (Laplane et al., 2019). It is easier to know what has or has not been done before and to have the ability to complement each other because of that knowledge. Additionally, it could be that new research will specifically look for diversity, instead of a universal model (Baldissera Pacchetti et al., 2024; Horton et al., 2022; Savenije, 2009). Different researchers would facilitate diversity in approaches and therefore give a more complete picture (Baldissera Pacchetti et al., 2024). Flexibility can also be introduced through modular modelling frameworks (Clark et al., 2008; Craig et al., 2020; Fenicia et al., 2011). This diversity 210 can encompass the different contexts in which the modelling is shaped or in which the modelling is used.

With more transparency on the social aspects of hydrological modelling, modellers and also funders, commissioners and decision makers can take responsibility for model results (Arg. 10). This should be a shared responsibility, not just the modeller's. The interplay between these actors can create dynamics influencing the modelling. This interplay should be made more visible (from Arg. 5). Structural changes in the modelling network (from Arg. 8) can facilitate this. Due to the transparency, modelling results will be more retraceable, and the limitations of a modelling study are more evident for and between different actors in the hydrological modelling network. Reflexivity on ontology can help modellers in their ability to recognize how their model results are partial, and might have looked different with another ontology. The transparency on the interplay influencing the modelling can provide better information for decision/policy makers, contributing to their ability to justify their policy decisions. For instance, after flooding in Brisbane and surrounding, the model

230

235

240

results were questioned and the organisations behind them were held responsible (Supreme Court of New South Wales, 2021). This example shows that the organisations using and providing model results need to be able to take responsibility of them. Sharing responsibilities can take many forms, but it starts with curiosity for and openness to knowing, understanding and taking action on the social aspects of hydrological modelling. Another example, outside of hydrology, is that the modellers that simulated the nitrogen emissions for a newly planned airport in the Netherlands were investigated by the Public Prosecution Service, because there were clear indications that all modelling decisions were made such that the nitrogen emission was as low as possible (Adecs Airinfra Consultants, 2021; NOS Nieuws, 2022). Not surprising perhaps, if the executing company sells themselves as "aviation lovers", but also the result of a commissioner that has certain interests. As such it is a clear example of how modellers can be held accountable for their model results, while they also face forces from, for instance, funders.

6 Invitation to start acting

As potential follow-up actions, we suggest:

- If you are a model user (i.e. someone who analyses and uses model results), you can consider asking the modeller for their assumptions
 - If you are a modeller, you can consider to start reflecting on your positionality, and consider to include a positionally statement in your next modelling study. How did your experience and position in society influence how you approached this study?
- If you are teaching the next generation of hydrological modellers, you can consider incorporating reflexivity practices and social science basics in your lecture, computer practical, course, or curriculum.
 - If you are a commissioner, you can consider allowing for more time or funding during projects for including reflexivity in the modelling process or writing a positionality statement. You can also consider to change your project requirements to include reflecting on positionality.
- If you are overseeing a modelling team, you can consider having a discussion on internalised assumptions in your way of working, also known as entrenched workflows (Levine and Wilson, 2013).

https://doi.org/10.5194/egusphere-2025-673 Preprint. Discussion started: 25 February 2025

© Author(s) 2025. CC BY 4.0 License.

250

255

260

265

These follow-up actions sound like a recipe. However, in this whole opinion paper, we have advocated and shown that hydrological modelling is context dependent. Therefore, we acknowledge that anyone implementing these potential actions needs to navigate their own working environment. More importantly, this list is not definitive; we invite you to explore and discuss this topic further, and come up with your own ways of incorporating reflexivity.

7 Conclusion

In this opinion paper, we argue why and how we think the hydrological modelling network, which we define as all actors, i.e. funders, commissioner, modellers, users, decision-makers, involved in and influencing the modelling study, can benefit from insights and practices from the critical social sciences. To support this, we have four pillars of arguments: the social aspects in hydrological modelling, insights from critical social sciences, building bridges between sciences, and reflecting on what the hydrological modelling network can learn. Based on these arguments, we provide some tangible follow-up actions targeting the whole modelling network to promote responsible modelling – modelling that is accountable, transparent, inclusive and reproducible. This responsibility is carried by all actors related to the modelling study. Even though we focused on the hydrological modelling network, these lessons are also applicable to other modelling communities.

The main take-away, from our perspective, is that responsible modelling is a shared responsibility. We realise that modellers tend to already bear a lot of the responsibility and are the easiest ones to ask actions from. Substantial change is not possible without also addressing the other actors in modelling studies, such as educators, commissioners, funders or supervisors. Therefore, we address the complete modelling network and society. We invite all actors to take up their share in establishing responsible modelling.

Author contributions. Conceptualisation: JR, in consultation with LM. Visualisation: UP and JR. Discussions: all authors. Drafting of manuscript: JR. Revisions: all authors.

Competing interests. One of the co-authors is on the editorial board of the journal Hydrology and Earth System Sciences.

270 Acknowledgements. LM received financial support from the Dutch Research Council through a personal Veni grant (nr. 17297, entitled What about the modeler? The human-factor in constructing Earth and environmental predictions). UP was funded by the Swiss National Science foundation under grant number 217899.

290

References

- Addor, N. and Melsen, L.: Legacy, rather than adequacy, drives the selection of hydrological models, Water Resources

 Research, 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019.
 - Adecs Airinfra Consultants: Berekeningen Lelystad Airport Achtergrondrapport bij de passende beoordeling, 2021.
 - Agrawal, T., Pompoes, R., Verzijl, A., Srinivasan, V., Nair, J., Huijbens, E., Kannadhasan, K., Chokkalingam, K., and Murugan, V.: Creating Kaveri Delta beneath our feet: An experiment in grounding socio-hydrology in Tamil Nadu, India, Journal of Hydrology, 644, 131 896, 2024.
- 280 Babel, L., Vinck, D., and Karssenberg, D.: Decision-making in model construction: unveiling habits, Environmental Modelling & Software, https://doi.org/10.1016/j.envsoft.2019.07.015, 2019.
 - Baldissera Pacchetti, M., Jebeile, J., and Thompson, E.: For a Pluralism of Climate Modeling Strategies, Bulletin of the American Meteorological Society, 105, E1350–E1364, https://doi.org/10.1175/BAMS-D-23-0169.1, 2024.
 - Beck, M. and Krueger, T.: The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling, Wiley Interdisciplinary Reviews: Climate Change, 7, 627–645, https://doi.org/10.1002/wcc.415, 2016.
 - Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, Journal of hydrology, 249, 11–29, 2001.
 - Beven, K., Lane, S., Page, T., Kretzschmar, A., Hankin, B., Smith, P., and Chappell, N.: On (in)validating environmental models. 2. Implementation of a Turing-like test to modelling hydrological processes, Hydrological processes, 36, e14703, 2022.
 - Blackett, P., Le Heron, E., Awatere, S., Le Heron, R., Logie, J., Hyslop, J., Ellis, J., Stephenson, F., and Hewitt, J.: Navigating Choppy Waters: why are we always arguing about risk and uncertainty in marine multi-use environments and what can we do about it?, Policy Quarterly, 20, 62–68, https://doi.org/10.26686/pq.v20i3.9560, 2024.
- Butts, M. B., Payne, J. T., Kristensen, M., and Madsen, H.: An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation, Journal of Hydrology, 298, 242–266, https://doi.org/10.1016/j.jhydrol.2004.03.042, 2004.
 - Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44, 2008.
- 300 Cole, S.: The hierarchy of the sciences?, American Journal of sociology, 89, 111–139, https://doi.org/10.1086/227835, 1983.
 - Comte, A.: The positive philosophy of Auguste Comte, C. Blanchard, 1855.

- Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, W., Jost, G., Lee, K., Mai, J., Serrer, M., Snowdon, A. P., Sgro, N., et al.: Flexible watershed simulation with the Raven hydrological modelling framework, Environmental Modelling & Software, p. 104728, https://doi.org/10.1016/j.envsoft.2020.104728, 2020.
- Deitrick, A. R., Torhan, S. A., and Grady, C. A.: Investigating the influence of ethical and epistemic values on decisions in the watershed modeling process, Water Resources Research, 57, e2021WR030481, https://doi.org/10.1016/j.ijdrr.2018.10.023, 2021.
- Doorn, N.: Resilience indicators: Opportunities for including distributive justice concerns in disaster management, Journal of Risk Research, 20, 711–731, https://doi.org/10.1080/13669877.2015.1100662, 2017.
 - Doorn, N.: Artificial intelligence in the water domain: Opportunities for responsible use, Science of the Total Environment, 755, 142 561, https://doi.org/10.1016/j.scitotenv.2020.142561, 2021.
 - Fanelli, D.: "Positive" results increase down the hierarchy of the sciences, PloS one, 5, e10068, https://doi.org/10.1371/journal.pone.0010068, 2010.
- Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling:
 Motivation and theoretical development, Water Resources Research, 47, https://doi.org/10.1029/2010WR010174,
 2011.
 - Frigg, R. and Hartmann, S.: Models in Science, in: The Stanford Encyclopedia of Philosophy, edited by Zalta, E. N. and Nodelman, U., Metaphysics Research Lab, Stanford University, Fall 2024 edn., 2024.
- 320 Funtowicz, S. O. and Ravetz, J. R.: Science for the post-normal age, Futures, 25, 739–755, https://doi.org/10.1016/00163287(93)90022-L, 1993.
 - Gorostiza, S., Parrinello, G., Aguettaz-Vilchez, D., and Saurí, D.: Where have all the sediments gone? Reservoir silting and sedimentary justice in the lower Ebro River, Political Geography, 107, 102 975, 2023.
- Hamilton, S. H., Pollino, C. A., Stratford, D. S., Fu, B., and Jakeman, A. J.: Fit-for-purpose environmental modeling:
 Targeting the intersection of usability, reliability and feasibility, Environmental Modelling & Software, 148, 105 278, https://doi.org/10.1016/j.envsoft.2021.105278, 2022.
 - Haraway, D.: Situated knowledges: The science question in feminism and the privilege of partial perspective 1, in: Women, science, and technology, pp. 455–472, Routledge, 2013.
 - Horton, P., Schaefli, B., and Kauzlaric, M.: Why do we have so many different hydrological models? A review based on the case of Switzerland, Wiley Interdisciplinary Reviews: Water, 9, e1574, 2022.
 - Irani, M., Naderi, M. M., Bavani, A. R. M., Hassanzadeh, E., and Moftakhari, H.: A framework for coastal flood hazard assessment under sea level rise: Application to the Persian Gulf, Journal of Environmental Management, 349, 119 502, https://doi.org/10.1016/j.jenvman.2023.119502, 2024.

- Jakeman, A. J., Letcher, R. A., and Norton, J. P.: Ten iterative steps in development and evaluation of environmental models, Environmental Modelling & Software, 21, 602–614, https://doi.org/10.1016/j.envsoft.2006.01.004, 2006.
 - Jakeman, A. J., Elsawah, S., Wang, H.-H., Hamilton, S. H., Melsen, L., and Grimm, V.: Towards normalizing good practice across the whole modeling cycle: its instrumentation and future research topics, Socio-Environmental Systems Modelling, 6, 18755–18755, https://doi.org/10.18174/sesmo.18755, 2024.
- Klein, A., Unverzagt, K., Alba, R., Donges, J. F., Hertz, T., Krueger, T., Lindkvist, E., Martin, R., Niewöhner, J., Prawitz, H., Schlüter, M., Schwarz, L., and Wijermans, N.: From situated knowledges to situated modelling: a relational framework for simulation modelling, Ecosystems and People, 20, 2361706, https://doi.org/10.1080/26395916.2024.2361706, 2024.
 - Kopp, R. E., Gilmore, E. A., Little, C. M., Lorenzo-Trueba, J., Ramenzoni, V. C., and Sweet, W. V.: Usable science for managing the risks of sea-level rise, Earth's future, 7, 1235–1269, https://doi.org/10.1029/2018EF001145, 2019.
- Krueger, T. and Alba, R.: Ontological and epistemological commitments in interdisciplinary water research: Uncertainty as an entry point for reflexion, Frontiers in Water, 4, 1038 322, https://doi.org/10.3389/frwa.2022.1038322, 2022.
 - Krueger, T., Page, T., Hubacek, K., Smith, L., and Hiscock, K.: The role of expert opinion in environmental modelling, Environmental Modelling & Software, 36, 4–18, https://doi.org/10.1016/j.envsoft.2012.01.011, 2012.
- Krueger, T., Maynard, C., Carr, G., Bruns, A., Mueller, E. N., and Lane, S.: A transdisciplinary account of water research,
 Wiley Interdisciplinary Reviews: Water, 3, 369–389, https://doi.org/10.1002/wat2.1132, 2016.
 - Lahtinen, T. J., Guillaume, J. H., and Hämäläinen, R. P.: Why pay attention to paths in the practice of environmental modelling?, Environmental Modelling & Software, 92, 74–81, https://doi.org/10.1016/j.envsoft.2017.02.019, 2017.
 - Lane, S. N.: Acting, predicting and intervening in a socio-hydrological world, Hydrology and Earth System Sciences, 18, 927–952, https://doi.org/10.5194/hess-18-927-2014, 2014.
- 355 Laplane, L., Mantovani, P., Adolphs, R., Chang, H., Mantovani, A., McFall-Ngai, M., Rovelli, C., Sober, E., and Pradeu, T.: Why science needs philosophy, Proceedings of the National Academy of Sciences, 116, 3948–3952, https://doi.org/10.1073/pnas.1900357116, 2019.
 - Latour, B.: Technology is society made durable, The sociological review, 38, 103–131, https://doi.org/10.1111/j.1467-954X.1990.tb03350.x, 1990.
- 360 Law, J.: After method: Mess in social science research, Routledge, https://doi.org/10.4324/9780203481141, 2004.
 - Lenhard, J. and Winsberg, E.: Holism, entrenchment, and the future of climate model pluralism, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41, 253–262, https://doi.org/10.1016/j.shpsb.2010.07.001, 2010.
- Levine, J. R. and Wilson, W. J.: Poverty, Politics, and a "Circle of Promise": Holistic Education Policy in Boston and the Challenge of Institutional Entrenchment, Journal of urban affairs, 35, 7–24, https://doi.org/10.1111/juaf.12001, 2013.

- Lim, T. C., Glynn, P. D., Shenk, G. W., Bitterman, P., Guillaume, J. H., Little, J. C., and Webster, D.: Recognizing political influences in participatory social-ecological systems modeling, Socio-Environmental Systems Modelling, 5, 18 509–18 509, https://doi.org/10.18174/sesmo.18509, 2023.
- Lin, A. M.: Researcher positionality, Research methods in language policy and planning: A practical guide, pp. 21–32, https://doi.org/10.1002/9781118340349.ch3, 2015.
 - Maier, H. R., Taghikhah, F. R., Nabavi, E., Razavi, S., Gupta, H., Wu, W., Radford, D. A., and Huang, J.: How much X is in XAI: Responsible use of "Explainable" artificial intelligence in hydrology and water resources, Journal of Hydrology X, p. 100185, https://doi.org/10.1016/j.hydroa.2024.100185, 2024.
- Mayer, L. A., Loa, K., Cwik, B., Tuana, N., Keller, K., Gonnerman, C., Parker, A. M., and Lempert, R. J.: Understanding
 scientists' computational modeling decisions about climate risk management strategies using values-informed mental
 models, Global Environmental Change, 42, 107–116, https://doi.org/10.1016/j.gloenvcha.2016.12.007, 2017.
 - McMillan, H., Seibert, J., Petersen-Overleir, A., Lang, M., White, P., Snelder, T., Rutherford, K., Krueger, T., Mason, R., and Kiang, J.: How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications, Water Resources Research, 53, 5220–5228, https://doi.org/10.1002/2016WR020328, 2017.
- 380 Melsen, L.: It Takes a Village to Run a Model—The Social Practices of Hydrological Modeling, Water Resources Research, 58, e2021WR030600, https://doi.org/10.1029/2021WR030600, 2022.
 - Melsen, L. A., Vos, J., and Boelens, R.: What is the role of the model in socio-hydrology? Discussion of "Prediction in a socio-hydrological world", Hydrological Sciences Journal, 63, 1435–1443, https://doi.org/10.1080/02626667.2018.1499025, 2018.
- Mendelsohn, E.: The social construction of scientific knowledge, in: The social production of scientific knowledge, pp. 3–26, Springer, 1977.
 - Micheletti, T., Wimmler, M.-C., Berger, U., Grimm, V., and McIntire, E. J.: Beyond guides, protocols and acronyms: Adoption of good modelling practices depends on challenging academia's status quo in ecology, Ecological Modelling, 496, 110 829, https://doi.org/10.1016/j.ecolmodel.2024.110829, 2024.
- Molle, F.: Water, politics and river basin governance: Repoliticizing approaches to river basin management, Water International, 34, 62–70, https://doi.org/10.1080/02508060802677846, 2009.
 - Nabavi, E.: Failed policies, falling aquifers: Unpacking groundwater overabstraction in Iran, Water Alternatives, 11, 699, https://www.water-alternatives.org/index.php/alldoc/articles/vol11/v11issue3/461-a11-3-14/file, 2018.
- Nabavi, E.: Computing and Modeling After COVID-19: More Responsible, Less Technical, IEEE Transactions on Technology and Society, 3, 252–261, https://doi.org/10.1109/TTS.2022.3218738, 2022.
 - Nabavi, E., Nicholls, R., and Roussos, G.: Locating Responsibility in the Future of Human–AI Interactions, IEEE Transactions on Technology and Society, 5, 58–60, https://doi.org/10.1109/TTS.2024.3386247, 2024.

- Njeri, S.: Race, positionality and the researcher, The companion to peace and conflict fieldwork, pp. 381–394, https://doi.org/10.1007/978-3-030-46433-2_26, 2021.
- 400 NOS Nieuws: OM onderzoekt mogelijk gesjoemel bij berekening stikstofuitstoot Lelystad Airport, 2022.
 - Oldfield, M.: Towards pedagogy supporting ethics in modelling, Journal of Humanistic Mathematics, 12, 128–159, https://doi.org/10.5642/jhummath.XVSP3245, 2022.
 - OMF: The Open Modeling Foundation, SA.
- Packett, E., Grigg, N. J., Wu, J., Cuddy, S. M., Wallbrink, P. J., and Jakeman, A. J.: Mainstreaming gender into water management modelling processes, Environmental Modelling & Software, 127, 104683, https://doi.org/10.1016/j.envsoft.2020.104683, 2020.
 - Petersen, A. C., Cath, A., Hage, M., Kunseler, E., and van der Sluijs, J. P.: Post-normal science in practice at the Netherlands Environmental Assessment Agency, Science, Technology, & Human Values, 36, 362–388, https://doi.org/10.1177/0162243910385797, 2011.
- 410 Proske, U., Ferrachat, S., Neubauer, D., Staab, M., and Lohmann, U.: Assessing the potential for simplification in global climate model cloud microphysics, Atmospheric Chemistry and Physics, 22, 4737–4762, https://doi.org/10.5194/acp-22-4737-2022, 2022.
 - Proske, U., Ferrachat, S., Klampt, S., Abeling, M., and Lohmann, U.: Addressing complexity in global aerosol climate model cloud microphysics, Journal of Advances in Modeling Earth Systems, 15, e2022MS003571, https://doi.org/10.1029/2022MS003571, 2023.
 - Pulkkinen, K., Undorf, S., Bender, F., Wikman-Svahn, P., Doblas-Reyes, F., Flynn, C., Hegerl, G. C., Jönsson, A., Leung, G.-K., Roussos, J., et al.: The value of values in climate science, Nature Climate Change, 12, 4–6, https://www.nature.com/articles/s41558-021-01238-9, 2022.
- Puy, A., Massimi, M., Lankford, B., and Saltelli, A.: Irrigation modelling needs better epistemology, Nature Reviews
 420 Earth & Environment, 4, 427–428, https://doi.org/10.1038/s43017-023-00459-0, 2023.
 - Refsgaard, J. C.: Terminology, Modelling Protocol And Classification of Hydrological Model Codes, pp. 17–39, Springer Netherlands, Dordrecht, ISBN 978-94-009-0257-2, https://doi.org/10.1007/978-94-009-0257-2_2, 1996.
 - Remmers, J., Teuling, A., and Melsen, L.: A modeller's fingerprint on hydrodynamic decision support modelling, Environmental Modelling & Software, p. 106167, https://doi.org/10.1016/j.envsoft.2024.106167, 2024.
- 425 Rödder, S., Heymann, M., and Stevens, B.: Historical, philosophical, and sociological perspectives on earth system modeling, Journal of Advances in Modeling Earth Systems, 12, e2020MS002139, https://doi.org/10.1029/2020MS002139, 2020.
 - Ross, A. and Chang, H.: Socio-hydrology with hydrosocial theory: two sides of the same coin?, Hydrological Sciences Journal, 65, 1443–1457, https://doi.org/10.1080/02626667.2020.1761023, 2020.

- 430 Saltelli, A. and Di Fiore, M.: The politics of modelling: Numbers between science and policy, Oxford University Press, https://doi.org/10.1093/oso/9780198872412.001.0001, 2023.
 - Sanz, D., Vos, J., Rambags, F., Hoogesteger, J., Cassiraga, E., and Gómez-Alday, J. J.: The social construction and consequences of groundwater modelling: insight from the Mancha Oriental aquifer, Spain, International Journal of Water Resources Development, 35, 808–829, https://doi.org/10.1080/07900627.2018.1495619, 2019.
- 435 Savenije, H. H.: HESS Opinions" The art of hydrology", Hydrology and Earth System Sciences, 13, 157–161, https://doi.org/10.5194/hess-13-157-2009, 2009.
 - Silver, N.: The signal and the noise: the art and science of prediction, Penguin UK, 2012.
 - Simonton, D. K.: Scientific status of disciplines, individuals, and ideas: Empirical analyses of the potential impact of theory, Review of General Psychology, 10, 98–112, https://doi.org/10.1037/1089-2680.10.2.98, 2006.
- 440 Sismondo, S.: An introduction to science and technology studies, John Wiley & Sons, 2011.
 - Sivapalan, M., Savenije, H. H., Blöschl, G., et al.: Socio-hydrology: A new science of people and water, Hydrol. Process, 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
 - Soedirgo, J. and Glas, A.: Toward active reflexivity: Positionality and practice in the production of knowledge, PS: Political Science & Politics, 53, 527–531, https://doi.org/10.1017/S1049096519002233, 2020.
- Stefanidou, C., Skordoulis, C., et al.: Subjectivity and objectivity in science: An educational approach, Advances in historical studies, 3, 183, https://doi.org/10.4236/ahs.2014.34016, 2014.
 - Supreme Court of New South Wales: Queensland Bulk Water Supply Authority t/as Seqwater v Rodriguez & Sons Pty Ltd [2021] NSWCA 206 (8 September 2021), https://classic.austlii.edu.au/au/cases/nsw/NSWCA/2021/206.html, Last accessed February 13 2024, 2021.
- 450 ter Horst, R., Alba, R., Vos, J., Rusca, M., Godinez-Madrigal, J., Babel, L. V., Veldwisch, G. J., Venot, J.-P., Bonté, B., Walker, D. W., and Krueger, T.: Making a case for power-sensitive water modelling: a literature review, Hydrology and Earth System Sciences Discussions, 2023, 1–31, https://doi.org/10.5194/hess-28-4157-2024, 2023a.
 - ter Horst, R., Michailovsky, C. I., Salvadore, E., and KS, C.: Does data lead to cooperation? Lessons from Water Accounting Plus in the Cauvery basin, India, Water International, 48, 1025–1045, https://doi.org/10.1080/02508060.2024.2303783, 2023b.
 - Teuling, A. J., De Badts, E. A., Jansen, F. A., Fuchs, R., Buitink, J., Hoek van Dijke, A. J., and Sterling, S. M.: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe, Hydrology and Earth System Sciences, 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, 2019.
- Thaler, T.: Social justice in socio-hydrology—how we can integrate the two different perspectives, Hydrological Sciences

 Journal, 66, 1503–1512, https://doi.org/10.1080/02626667.2021.1950916, 2021.

- Turnhout, E., Metze, T., Wyborn, C., Klenk, N., and Louder, E.: The politics of co-production: participation, power, and transformation, Current opinion in environmental sustainability, 42, 15–21, https://doi.org/10.1016/j.cosust.2019.11.009, 2020.
- van der Sluijs, J. P.: A way out of the credibility crisis of models used in integrated environmental assessment, Futures, 34, 133–146, https://doi.org/10.1016/S0016-3287(01)00051-9, 2002.
 - Venot, J.-P., Zwarteveen, M., Kuper, M., Boesveld, H., Bossenbroek, L., Kooij, S. V. D., Wanvoeke, J., Benouniche, M., Errahj, M., Fraiture, C. D., et al.: Beyond the promises of technology: A review of the discourses and actors who make drip irrigation, Irrigation and drainage, 63, 186–194, https://doi.org/10.1002/ird.1839, 2014.
- Venot, J.-P., Vos, J., Molle, F., Zwarteveen, M., Veldwisch, G. J., Kuper, M., Mdee, A., Ertsen, M., Boelens, R., Cleaver,
 F., Lankford, B., Swatuk, L., Linton, J., Harris, L. M., Kemerink-Seyoum, J., Kooy, M., and Schwarts, K.: A bridge over troubled waters, Nature Sustainability, 5, 92–92, https://doi.org/10.1038/s41893-021-00835-y, 2022.
 - Wamucii, C. N., Van Oel, P. R., Ligtenberg, A., Gathenya, J. M., and Teuling, A. J.: Land-use and climate change effects on water yield from East African Forested Water Towers, Hydrology and Earth System Sciences Discussions, 2021, 1–22, https://doi.org/10.5194/hess-25-5641-2021, 2021.
- 475 Ward, Z. B.: On value-laden science, Studies in History and Philosophy of Science Part A, 85, 54–62, https://doi.org/10.1016/j.shpsa.2020.09.006, 2021.
 - Watts, L. and Hodgson, D.: Critical Social Science and Critical Theory, pp. 97–116, Springer Singapore, Singapore, ISBN 978-981-13-3621-8, https://doi.org/10.1007/978-981-13-3621-8_6, 2019.
- Wesselink, A., Kooy, M., and Warner, J.: Socio-hydrology and hydrosocial analysis: toward dialogues across disciplines, Wiley Interdisciplinary Reviews: Water, 4, e1196, https://doi.org/10.1002/wat2.1196, 2017.
 - Winsberg, E.: Values and uncertainties in the predictions of global climate models, Kennedy Institute of Ethics Journal, 22, 111–137, https://doi.org/10.1353/ken.2012.0008, 2012.
 - Xu, L., Gober, P., Wheater, H. S., and Kajikawa, Y.: Reframing socio-hydrological research to include a social science perspective, Journal of hydrology, 563, 76–83, https://doi.org/10.1016/j.jhydrol.2018.05.061, 2018.
- Warteveen, M. Z. and Boelens, R.: Defining, researching and struggling for water justice: some conceptual building blocks for research and action, in: Hydrosocial Territories and Water Equity, pp. 8–23, Routledge, 2017.